Top Five New Features and Functions in Global Mapper Version 20.1

Interim releases of Global Mapper typically offer the Blue Marble development staff an opportunity to fine-tune some of the functionality that was introduced in the most recent major release. While the upcoming version 20.1 release includes its fair share of performance improvements and code tweaks, it also offers a surprising collection of new tools covering everything from the Digitizer to scripting. With the release just a few weeks away and the final edits being applied to the underlying code, we take a sneak peek at some of the more significant additions.


Using the new Zoom tool in the Path Profile View.

Path Profile Zooming

The importance of Global Mapper’s Path Profile tool has grown immensely since the introduction of the LiDAR Module. While it is most commonly used to render a cutaway view of a terrain layer, it also displays a cross-sectional view of points in a point cloud and can used to edit or delete selected points. New in version 20.1 is the option to zoom in the profile view – a function that ensures that even the most densely-spaced points can now be individually identified and selected.

Profile Legend

Continuing the theme of improvements to the Path Profile tool, a new option has been added to more clearly define the individual surfaces when rendering profile lines for multiple layers. A legend, which can be placed anywhere within the Path Profile window, shows each line style along with the corresponding surface layer. This is particularly useful when visualizing and analyzing multiple layers representing change over time.


Selecting a default projection.

Default Projection

Global Mapper’s projection management is universally acknowledged for its simplicity. Load any layer and the inherent projection parameters associated with the layer define the display projection. Each successive layer is then automatically reprojected on the fly to adhere to this system. No questions asked. Change the display projection and each exported layer will ultimately include these new projection parameters. In Global Mapper 20.1, an even simpler approach to projection management can be enabled with the assignment of a universal default projection. With this new configuration setting, a specified projection will be automatically applied when creating or importing any new layer.


Gaps between areas before applying the new “Close Gaps Between Adjacent Features” function
The areas after applying the “Close Gaps Between Adjacent Features” function

Vector Gap Closing

When creating abutting polygons, Global Mapper’s snapping functionality helps ensure that the features’ shared vertices are a perfect match, without overlap or gaps. When importing external files, however, such precise geometric integrity is not always the case. A new Digitizer tool available in version 20.1 can be used to automatically correct these errors. The “Close Gaps Between Adjacent Features …” function allows a maximum distance threshold to be established allowing the boundary lines to be perfectly matched.


The “Select LiDAR by Distance” tool can be used to select a particular point type within a defined distance of a feature

LiDAR Proximity Selection

A common use case in point cloud or LiDAR analysis is the detection of encroachment, and a new point selection option in the LiDAR Module provides this functionality to Global Mapper users. The “Select LiDAR by Distance” tool can be used to specify a particular point type (such as powerline), a distance threshold, and a target point type (such as high vegetation). In this case, running the search will highlight vegetation points that are encroaching within a defined distance of powerlines. This tool can be applied in many other workflows and includes the option to detect points within the proximity of 3D line features instead of points.

What is Maintenance and Support and How Does it Affect Me?

Global Mapper TrainingChelsea E | Projections
Global Mapper open on a laptop in a training course conducted by Blue Marble Geographics’ applications specialists. Maintenance and Support, along with the knowledgebase, videos, and self-guided training, allows users to access the expertise of Blue Marble’s experts.

If you have purchased Global Mapper and/or the LiDAR Module in the last two years, you have heard from our sales team regarding Maintenance & Support (M&S). But you may find yourself wondering, “What is Maintenance and Support and how does it affect me?”

The “Maintenance” Part – Keep your version of Global Mapper up-to-date

Longtime users know that, with every purchase or upgrade of Global Mapper includes a year of technical and licensing support. This support, along with our knowledgebase, videos, and self-guided training, allows users to explore and experience all Global Mapper has to offer. With customers in mind, we updated our support model in summer of 2017 with a 12-month M&S plan that begins on the date payment is received for an order. M&S now includes all version releases of the software within that 12-month period, allowing customers to utilize the most current version of Global Mapper.

The “Support” Part – The Blue Marble Tech Team is here for you

In addition to providing users access to the most current version of Global Mapper, M&S also includes the unparalleled technical and licensing support we are known for offering. Our technical team is ready to answer any questions you might have, from format questions, to complex workflow scenarios, in a timely manner. Technical Support is not a substitute for training. We offer many training solutions both in person and virtually. For more information please visit https://www.bluemarblegeo.com/solutions/geodesy-training.php .

Maintenance and Support Renewals and License Structure

This M&S model also provides customers with the option to renew their support every year. Some of you will likely have received emails from us in the past few months letting you know that your support has ended, and explaining how to renew your subscription. Please contact the sales team with questions about the renewal option, coverage period, or how to purchase additional licenses.

I’m sure many of you are thinking that since Global Mapper has a perpetual license structure, “How will Maintenance and Support affect that model?” Rest assured it will not affect your license. However, the level of support that you receive is directly related to the status of your M&S. If your M&S is out of date, Blue Marble’s technical and licensing support teams may be unable to assist you.

Blue Marble strongly encourages you to stay up-to-date with M&S, so that you have access to the best software we have to offer. Staying current guarantees the highest level of software support and service, and that you are receiving the latest software fixes and enhancements.

In the coming weeks Global Mapper 20.1 will be released. Are you eligible to use all the great features and enhancements the new release has to offer? Users with current M&S coverage will need to download and license this version of Global Mapper. If your M&S is out of date or if you have questions about the status of your Global Mapper license, please contact orders@bluemarblegeo.com.

Create a 3D Model from a Point Cloud in Global Mapper

One of the highlights of the version 20 release of Global Mapper is a new tool for generating a 3D mesh or model from a selected LiDAR or other point cloud points. The resulting layer contains a complex vector feature comprised of an array of abutting triangles that, when displayed in Global Mapper’s 3D Viewer, take the form of a realistic three-dimensional representation of the object. As is typical with Global Mapper, the process of creating a 3D mesh is remarkably straightforward.

Foreshadowing Geodetic Updates: NADCON 5.0 in Geographic Calculator 2019

The latest version of Blue Marble Geographics’ coordinate conversion software continues the 25-year tradition of providing solutions for the most complex geodetic challenges. Geographic Calculator 2019 offers a number of requested improvements, such as a more user-friendly interface, a universal copy and paste function, a new angular unit conversion tool, as well as several enhancements to seismic file format support. However, a closer look also reveals several new features that provide some insight into more significant shifts in Blue Marble’s future development plans.

Geographic Calculator 2019 has added support for version 5.0 of the National Geodetic Survey’s (NGS) North American Datum Conversion tool (NADCON 5.0). This single line item in the release notes may be easily overlooked, but it represents years of work by NOAA-NGS. It also represents a fundamental change in the way United States coordinate reference system and reference frame transformations are performed. Before delving into the details, let’s answer this question…

What is NADCON 5.0?

The origin of this transformation methodology is rooted in the readjustment of the North American Datum of 1927 (NAD27) to the North American Datum of 1983 (NAD83). The differences between these reference frames were very regional and irregular, which resulted in shifts that could not easily be modeled with traditional mathematical transformations. The solution was the original North American Datum Conversion (NADCON) Utility, which was adopted in 1990 as the federal standard for modeling differences between the two systems.

The early versions of the NADCON transformations typically had an accuracy of 12 to 18 centimeters, which represented a significant improvement over most other large-scale models at the time. That said, the tool did have its shortcomings. According to NGS, it was “poorly documented, was applied inconsistently across regions, contained numerous errors, and was difficult to use”. Those kinds of defects were also shared by another NOAA-NGS tool called GEOCON, introduced during the realization of the NAD83(2007) reference frame. The significant difference between the original NADCON and GEOCON transformations was the latter’s ability to perform three-dimensional coordinate transformations among various newer NAD83 frames. This was also improved in GEOCON11 (version 2.0), but time constraints meant that only eleven states were able to provide data for these adjustments.

NADCON 5.0 was built to replace both of these imperfect NGS tools. Unlike its predecessors, it is well-documented, more “user-friendly”, it includes downloadable transformation grids that can be integrated into third-party software, and covers the entire United States (including overseas territories). Newer remote sensing technology and the ability to handle much larger datasets also allows for a finer level of detail during the transformation process. As with the GEOCON model, NADCON 5.0 also offers new transformations between many reference frames and three-dimensional coordinate systems, and it supports the US National Spatial Reference System (NSRS) as well as many other previously unrecognized local horizontal coordinate systems dating back to the late 1800s. It also provides local error estimates as a component of the transformation, which is likely to pique the interest of your friendly neighborhood geodesist.

How does NADCON 5.0 work?

Like the traditional NADCON version 4.0 transformation, version 5.0 is delivered as a set of grid files that can be used to move between individual reference frames. Unlike version 4.0 however, it is no longer limited to horizontal shifts. The new grid files contain fields for identifying 3D transformations between reference frames and an error metric where available. Furthermore, there is a much larger set of grids to choose from and it is no longer constrained to the traditional NAD27->NAD83 or NAD83(20xx)->NAD83(20xx) model. Instead, transformations can be performed between six separate realizations of NAD83, NAD27, and the US Standard Datum (USSD). NADCON 5.0 also provides access to precise transformations between other historic systems such as the Old Hawaiian Datum, Puerto Rico 1940, and local Alaskan systems, such as the St. Paul Island reference frame of 1897 and 1852.

Unlike the old version 4.0 transformation, NADCON 5.0 was designed to chain together various grid files to provide a more accurate result. This makes things a bit more complicated because of the need to keep track of individual transformations as components of a larger concatenated operation. The following diagram shows an example of a shift from the NOAA Technical Report NOS NGS 63.

Diagram from the NOAA Technical Report NOS NGS 63

The illustration shows a chain of transformations for moving a surveyed data point based on the USSD system to NAD83(2011). Any subset of the chain can be used independently as part of the NADCON 5.0 model. This chain process can support a new model once it is created (for example, the 2022 National Reference System) and with one grid file, associate it to all historical models.

So what is foreshadowing about the addition of NADCON 5.0 in Geographic Calculator?

NADCON 5.0 will be instrumental in the transition to yet another adjustment from NAD83 on the horizon — the introduction of the new National Reference Frame of 2022 (NATRF2022) and NSRS2022.

A graphic from the NOAA Technical Report NOS NGS 63 shows the errors for horizontal transformation for USSD/NAD 27/CONUS.

If you are a frequent visitor to Projections, the Blue Marble blog, you may have read an entry by Product Manager Sam Knight explaining why the new NSRS is being developed. If you haven’t seen Sam’s entry, the short explanation is that geoid and GPS-height accuracy have improved and that NAD83 did not account for the dynamic movement of our planet over time. Under the new system, all measurable gravity-related values (such as orthometric heights, geoid undulation, deflections of the vertical, etc…) will be time dependent for compatibility with the NATRF2022 coordinate systems — making for more accurate time-dependent transformations.

NSRS2022 will also replace all of the current vertical datums, which will require updates to VERTCON — another NGS transformation tool. Originally designed to transform between the North American Vertical Datum of 1988 (NAVD 88) and the North Geodetic Vertical Datum of 1929 (NGVD 29), the 2022 update to VERTCON will transform orthometric heights from the old datums into heights in the new North American-Pacific Geopotential Datum (NAPGD2022).

Small changes leading up to larger changes

With awkward acronyms, complex geodetic concepts, and NGS tool history, the 2022 update as it relates to NADCON 5.0 is a lot for a short blog entry. But hopefully you get the key message: NGS is making big changes that will lead to more accurate transformations and Geographic Calculator is an early adopter of these new geodetic parameters. Be on the lookout for more updates as tools like NADCON 5.0 develop and grow. Until then, the Geographic Calculator will continue to hold a finger on the NGS pulse.

To learn more about NGS, its tools and the upcoming NSGS of 2022, visit their website at https://www.ngs.noaa.gov or read this NOAA report.

Creating a 3D Fly-Through in Global Mapper in Five Easy Steps

Let’s begin with a poll. With a show of hands, how many of you currently work with some sort of 3D data in Global Mapper?* One, two, three, four… OK, I think I can safely conclude that everyone’s hand is raised, just as I thought. We are currently at a significant epoch in the history of mapping. Traditional cartographic renderings consider the Earth from a two-dimensional, birds-eye perspective but that is rapidly changing. Our world is a 3D world and the technologies that we use to visualize, analyze, and distributize** our geospatial data are increasingly taking the additional dimension into consideration.

Case in point is Global Mapper’s ingenious fly-through recording capability. What better way to show your client the scope of your engineering project, or to share the archeological model created using the Pixels-to-Points tool, or to simply soar over mountains and valleys unencumbered with the constraints of gravity, feeling the wind in your face as you glide… OK settle down. Back on task.

As is typical with Global Mapper, the fly-through recording functionality is remarkably straightforward. Draw a line defining the flight path, enter the flight parameters, open the 3D View, click the Play button and you’re on your way (with seatbelts fastened and tray tables in their upright and locked position, of course). Alternatively, if you have a prerecorded track file, such as one that was created by a drone, you can use that as the flight line. All of the flight parameters such as speed, height, etc., will be automatically assigned.

Let’s take a look at an actual example.


1. Load a 3D data layer in Global Mapper

In this scenario, we’ll use a 3D mesh created in the Pixels-to-Points tool. Frequent viewers of Global Mapper video presentations or training class attendees will already be familiar with the data in question ̶ ­the famous Brazilian landfill.


Drawing a flight path in Global Mapper
Drawing the flight path using the Digitizer’s Line tool

2. Draw the flight path

Before putting pen to paper (or digitizer to screen, to be more precise), we will need to consider what form our flight will take. There are three alternatives: Straight Ahead, in which the view will look in the direction of the flight (a cockpit view, if you like); Fixed Direction, in which the view will always be on a specified bearing or azimuth; or Fixed Point, in which the view will always be focused on a target point in three-dimensional space. Because we will be using the latter, we will create a line that encircles the focus point.


3. Set the flight parameters

With the newly created line selected on the map, we click the Create 3D Fly-through button (hint: it looks like an airplane, you can’t miss it). If you haven’t seen it before, the dialog box includes a table listing the XY coordinates of each vertex in the line along with a number of additional columns that will be automatically filled in after we apply the necessary settings.

Setting flight parameters in Global Mapper
Setting the flight parameters including focal target, altitude, and speed

As previously noted, we’re going to use the Fixed Point option, which requires us to enter the focal target, a process made easy using the Select from Map button. Because we want the perspective to be looking down rather than horizontally, we establish a target Z value corresponding with ground elevation or a little below, let’s say 550 meters.

Elevation Mode in this case will be Absolute, meaning that our flight will maintain a specific altitude. The alternative, Relative to Ground, will result in the simulated flight rising and falling while maintaining a consistent height about the surface (the captain apologizes for the turbulence). For our landfill flight, we will be cruising at a consistent altitude of 650 meters.

Finally, we need to decide how fast we want to fly. This can be established by either setting the duration of the flight or by entering an actual meters-per-second value. Setting one of these variables will automatically change the other. Our circuit of the landfill will take 40 seconds.

Clicking the Generate Fly-through Data button will populate the aforementioned table with per-vertex flight details and double-clicking on any line in the table will offer the option of editing the settings for that segment. After clicking the OK button, we’re ready to take to the air.


Viewing the flight playback in 2D and 3D
Viewing the flight playback in the 2D and 3D Views

4. Play the fly-through

Now for the fun part. In the 3D View, a collection of buttons controls the preview, playback, and editing of the flight. Click Play and away we go. In the corresponding 2D view, we can monitor our progress and heading along the flight line. Should we need to make any changes, there’s an identical airplane button in the 3D View, which opens the same dialog box that we used to create our flight.


5. Export the video

Finally, we click the button that resembles a vintage movie camera to save a video file in either MPEG-4 or AVI format with options for defining the resolution and frame rate. The video can then be posted to our favorite movie sharing site or sent directly to a client.

Wasn’t that easy? Time to try it for yourself.

*If you actually did raise your hand in response to reading this question you might want to explain to your office colleagues what you were doing

**Not a real word

Vector Extraction from a Raster Image in Global Mapper

 

In this example of extracting vectors from a raster layer in Global Mapper, we will automatically create polygons outlining lakes from an aerial image.

Here are the steps to follow to extract a vector from a raster layer:

  1. From the Layer menu, click Create Area Features from Equal Values…
  2. Name the target layer and choose the option to extract Only Selected Color(s)
  3. Choose Select Color from Map and click on a location representing the required color
  4. Apply a Color Fuzziness value and define the extent of the extraction process
  5. Use the Digitizer to remove unwanted polygons

The extracted polygons can be exported in any supported vector file format

Top 5 Tools and Functions of the Global Mapper LiDAR Module

In anticipation of the increasing availability and use of LiDAR and other point cloud datasets, the LiDAR Module, an add-on to Global Mapper, was first introduced in version 15 of the software. Over the last five years, this popular component has rapidly evolved and offers an array of powerful tools.

In this blog entry, we highlight the top five most important tools and functions in the LiDAR Module, including extracting vector features, processing UAV-collected images into point clouds, filtering LiDAR data, and generating 3D meshes or models.


Pixels-to-Points Tool in Global Mapper
3D Point cloud of a barn viewed created with the Pixels-to-Points tool

1. Pixels-to-Points

The newest addition to the LiDAR Module, Pixels-to-Points is a tool for creating a high-density point cloud, orthoimage, and 3D meshe from overlapping images, especially those captured using a drone

Based on the principles of photogrammetry, the Pixels-to-Points process identifies objects in multiple images and from multiple perspectives to generate a 3D point cloud. As a by-product of the point-generation process, the tool can also create an orthoimage by gridding the RGB values in each point, as well a 3D mesh, complete with photorealistic textures.

Pixels-to-Points offers photogrammetric point cloud creation that is both affordable and straightforward, and is increasingly used as an alternative to traditional LiDAR collection.


Auto Classification of LiDAr points
Buildings and trees identified and reclassified in a LiDAR layer

2) Auto Point Reclassification

The LiDAR Module’s automatic reclassification tools can accurately identify points representing ground, vegetation, buildings, and utility cables.

Algorithms in the LiDAR Module analyze the geometric properties and characteristics of point clouds to quickly classify these features. This process is commonly used to identify, classify, and filter ground points when creating a Digital Terrain Model (DTM), or as a first step in the process of isolating specific feature types when extracting vector features, such as buildings or trees, from a point cloud.


Feature Extraction using the Global Mapper LiDAR Module
Vector lines representing above-ground power cables extracted from LiDAR data

3) Feature Extraction

The Feature Extraction tool is used to create vector objects from appropriately classified points.

Based on a series of customizable settings, points representing buildings, trees, and utility cables are analyzed and automatically delineated as a series of 3D vector objects or, in the case of buildings, as a 3D mesh.

Feature extraction is particularly useful for creating building footprints, defining roof structures, powerlines, and other 3D features from classified LiDAR data.


Digitizing the edge of a curb using the Global Mapper LiDAR Module
Digitizing the edge of a curb using the perpendicular profile function

4) Custom Feature Extraction

Custom Feature Extraction is a function for delineating atypical 3D features from point cloud data.

This function allows for the creation of accurate 3D line or area features by defining control vertices in a sequential series of perpendicular path profile views. Examples of using Custom Feature Extraction might be for defining road curbs, pipelines, or drainage ditches,


3D Mesh created using the Global Mapper LiDAR Module
3D Mesh of a suburban neighborhood created from selected points in a point cloud

5) Mesh Creation from LiDAR Points

Mesh Creation is a function that uses a selected group of points to create a 3D vector object complete with photorealistic colors or textures.

The LiDAR Module offers the ability to create a mesh or model using the 3D geometry and colors of a selected group of points. When viewed in 3D, this model displays as a multifaceted photo-realistic 3D representation of the corresponding feature.

For information about all of the features that the LiDAR Module has to offer, visit our website here.

Webinar: What’s New in Global Mapper v20

The What’s New list in Global Mapper 20 reflects the increasing importance of 3D data visualization and processing, with numerous new tools for working with point clouds, 3D meshes, 3D vector features, and terrain models. In the latest Global Mapper webinar, we showcase some of the highlights of this release.

Among the specific topics covered in the webinar are:

  • New Map Layout options
  • A new eyedropper tool for color selection
  • Speed and performance improvements
  • New online data options including NextMap One
  • New mesh processing tools
  • New Fly Mode in the 3D View

And in the LiDAR Module:

  • Updates to the Pixels-to-Points tool
  • 3D model creation from a point cloud
  • LiDAR thinning
  • And much more

The Top 5 New Features of Global Mapper 20

point cloud from 3D mesh
Global Mapper 20 not only offers the ability to create point clouds from 3D meshes, but also offers the option to create a flattened orthoimage derived from the colors in the mesh.

What’s New in Global Mapper version 20?

If you are like most people, it’s unlikely that you take the time to read the plethora of dialog boxes that appear when installing software but if you did, you might actually learn some interesting details about the application. In the case of Global Mapper, one of the windows that beckons for your attention is the “What’s New…” list. While we understand the eagerness of most users to repeatedly click the Next button and finish the installation process so they can “play” with their new toy, it might be worth pausing on this one for just a moment.

Blue Marble’s development process requires each new tool, functional upgrade, bug fix, and performance improvement to be meticulously documented and archived. What you are presented within the “What’s New …” list is an abbreviated version of this archive. In a sense, the list offers a summary report of what the development staff has been working on over the preceding weeks and months. It can make for some interesting reading.

For the soon-to-be-released Global Mapper version 20, there are more than 200 individual changes that have been noted. Given the dynamic nature of the development process, this number will likely increase by the actual date of release.

For those of you who do not have the time or the wherewithal to peruse the entire list, what follows, in no particular order, is a summary of five of the most significant new features that you will find in Global Mapper 20.


Map Layout tools have been streamlined in Global Mapper 20.

1) Improvements to the Map Layout function

One of the surprising findings from last year’s Global Mapper user survey was the importance of map printing. For years, the prevailing opinion has been that printed maps would eventually bite the proverbial dust, but this has not been the case. Global Mapper’s Map Layout functionality was completely redesigned a couple of years ago and it has been undergoing continual improvements ever since. For this release we have introduced a new tool for creating a map book or atlas from selected features;  a new option to filter the legend by layer; and a custom macro function that allows you to create title blocks with name, company, etc. Suffice to say, if your workflow requires the printing of maps, Global Mapper 20 has all the tools you need.

2) Support for Windows Tablets with improved touchscreen functionality

While Global Mapper has always been supported on Windows-based touchscreen devices, certain actions and UI procedures have been difficult. In version 20, there have been significant improvements that allow a wider range of actions to be controlled with your fingers. Pinching to zoom the map is now supported as well as swiping with two fingers to pan the map in both the 2D and 3D views. Previous enhancements to support touchscreen interaction include, touching the screen to activate contextual menus and tapping on the screen with any of the digitizing tools enabled to place points or vertices.

3) Ability to create a point cloud or flattened orthoimage from a 3D mesh or model

Creating a point cloud, similar in structure to LiDAR data, from an existing 3D model or mesh may seem like an inverted procedure. It is the reverse of what would be considered a normal workflow. It does, however, open up a number of interesting 3D analysis workflows, in which the source data is an existing 3D mesh. For instance, the point cloud created from the model can be readily classified, edited, and filtered using Global Mapper’s LiDAR processing tools, and points representing ground can be used to create a DTM. Version 20 of Global Mapper not only offers this new point cloud creation tool but it also offers the option to create a flattened orthoimage derived from the colors in the mesh.

4) Speed improvements when loading large vector files

Citing any type of performance improvement as a new version highlight is often perceived as subjective and difficult to quantify or validate. In the case of Global Mapper 20, the improved speed when working with larger vector files is tangible. During our internal testing, the load time for a specific large shapefile was measured at just over four minutes in version 19 of Global Mapper. In version 20, on the same multi-core machine, the load time was shaved to 2.5 seconds. That’s almost 100 times faster. Improvements have also been made to the rendering of large vector files in the 3D View.

Global Mapper 20 now offers a color picker option, with which users can simply click the section of a raster image that they want to extract color from.

5) Eyedropper tool for accurate color selection

Perhaps not a major functional upgrade, however, when considered in the context of one of the author’s favorite Global Mapper tools, it is a godsend. The tool in question is a feature informally referred to as “Raster Vectorization” or, to give its proper name, “Create Area Features from Equal Values”. The premise is simple: By identifying a specific color in an image, you can create polygons that enclose the extent of the pixels of that color or you can expand the tolerance to accommodate similar colors. Previously, fine-tuning the color selection involved manually entering the required RGB values. In version 20, there now is a color picker option, with which you simply click the section of the raster image that you want to extract. This color picker is also available when choosing a transparent color for a raster layer.

And a couple of bonus highlights for LiDAR Module users:

Tool for creating a 3D model or mesh from selected LiDAR points

The underlying technology that enables the creation of an orthoimage was incorporated into Global Mapper within the Pixels-to-Points tool, introduced in the LiDAR Module in version 19. As a byproduct of the photogrammetric 3D point cloud generation process, there is also an option to generate a flattened raster representation of the area in question. Previously, the only way to create either of these data outputs was from drone images. With version 20 of the LiDAR Module, there is now an option to create a mesh or orthoimage from selected points in an existing LiDAR file or point cloud.

Version 20 of the LiDAR Module will come with a new function to spatially thin a LiDAR layer. This tool allows users to specify a target resolution for the point cloud which eliminates redundancy, reduces file size, and improves performance.

Option to spatially thin a point cloud

The LiDAR Module offers an extensive array of point cloud filtering and editing tools. Among the options are: deleting selected points, geographically cropping a point cloud, removal of noise points, manual or automatic reclassification of points, and horizontal or vertical shifting of the point cloud layer. Added to this list in version 20 is a new function to spatially thin a LiDAR layer. This tool allows the user to specify a target resolution for the point cloud which eliminates redundancy, reduces file size, and improves performance.

Version 20 Coming in Mid September

Global Mapper 20 is scheduled for release in the second half of September 2018. Check your inbox or visit bluemarblegeo.com to find out when it is available for download. As always, you can activate a free two-week trial and if you have time, check out the full What’s New list to see what improvements have been made to your favorite Global Mapper tools.