Five Reasons Why You Should Attend a Blue Marble User Conference

Patrick Cunningham at BMUC 2018Chelsea E | Projections
Blue Marble President Patrick Cunningham welcomes attendees at the Blue Marble User Conference 2018 in Portland. He talked about the use of Global Mapper by organizations such as NASA, GolfLogix, BGC Engineering, and more.

 

On September 21, one of the most prestigious geospatial events took place!

 

via GIPHY

 

You guessed it! It was the 25th Anniversary Blue Marble User Conference.

So, there might be a chance that you haven’t actually heard of this event. That’s ok! I’m writing this to convince you that, whether you are a Blue Marble software user or not, you should know about this conference.

Here are the five reasons why you should join us at the Blue Marble User Conference next year:


Mike Childs at BMUC 2018Chelsea E | Projections
Mike Childs, the Global Mapper Guru, responds to a question from a conference attendee.

1. I’m there! … and Global Mapper architects, developers, and experts are too

Chelsea E | Projections
Channel Account Manager Myles LaBonte (left) and Blue Marble reseller Laurent Martin (right) after the Blue Marble User Conference. Laurent, who traveled almost 5,000 miles to attend the conference, says that he’s always felt like he is a part of the Blue Marble team.

Yes, I’m there running around taking pictures and recording video (and eating the food), but what’s more valuable to you are the software developers and resellers who are there to hear your questions and requests.

This particular Blue Marble User Conference was especially valuable because the Global Mapper guru Mike Childs and our international resellers were there. After the day’s presentations and software demonstrations were over, Mike answered questions and heard software  suggestions from attendees while our product manager jotted down the ideas.

It’s a part of Blue Marble’s core values to welcome and encourage users to be part of the development process. That user-to-developer communication is usually in the form of emails, but at a Blue Marble conference, users can communicate directly with the experts and know their ideas will make it to a discussion in our development meetings.


Larry Mayer at BMUC 2018Chelsea E | Projections
Larry Mayer presents on advancements in sonar and visualization technology for exploring the sea floor at the Blue Marble User Conference 2018 in Portland, Maine.

2. You will be inspired by presentations from distinguished GIS professionals

Did you know that scientists know more about the surfaces of Mars and the moon than they do of the Earth’s ocean floor – aka 75% of the world’s surface? I didn’t.

At this Blue Marble User Conference, Larry Mayer, Director of the School of Marine Science and Ocean Engineering and Director of the Center for Coastal and Ocean Mapping at the University of New Hampshire (phew! Long title!), delivered a presentation on the advancements in sonar and visualization technology for exploring the sea floor. He explained how the technology has helped in the discovery of 3,000-meter high mountains in the Arctic, D-day wrecks, the behavior of whales, and the history of climate through the impact of ice on the sea floor. He touted that investing in more ocean research would help us, people of the world, gain a better understanding of our planet.

Chelsea E | Projections
Ron Chapple, CEO of Aerial Filmworks, discusses his role in the making of the Pulitzer Prize-winning documentary “The Wall”.

Our second keynote speaker and CEO of Aerial Filmworks, Ron Chapple took attendees from exploring the deep with Larry to examining the Earth from above. Ron talked about the challenges that came with producing the Pulitzer Prize-winning documentary “The Wall”, which analyzes the impact of the proposed wall along the border between the U.S. and Mexico. His role in the project was to shoot aerial footage, over which he highlighted the location of the 2,000-mile long border using Global Mapper.

I was surprised to learn how difficult it was for the team of “The Wall” to accurately represent the curvy U.S.-Mexico border in the video.

My point is that BMUC includes amazing presentations by distinguished GIS professionals that give insight into projects that are relevant to the industry today.


David McKittrick at BMUC 2018Chelsea E | Projections
David McKittrick, Senior Applications Specialist, offers “Tips and Tricks” on how to use Global Mapper at the Blue Marble User Conference 2018 in Portland, Maine.

3. You will leave smarter and gain Global Mapper “Tips and Tricks”

In between presentations at this year’s BMUC, Senior Applications Specialist David McKittrick took a few minutes to share some “tips and tricks” on how to use Global Mapper. The tips ranged from how to use the multiview display, smooth contours, view data in Google Earth, and create a terrain cutaway.

David also presented on the recent release of Global Mapper 20 and the LiDAR Module, which offers streamlined map layout tools, the ability to create a point cloud from a 3D mesh, a new eyedropper tool for selecting features, dramatically faster loading speeds for working with vector files, and a lot more.

All of these demonstrations were followed by an opportunity for attendees to ask questions that would help them apply these techniques to their own projects.


Larry Mayer talking with BMUC 2018 attendeesChelsea E | Projections
Larry Mayer answers questions after his presentation at the Blue Marble User Conference 2018 in Portland, Maine.

4. You will eat with other GIS professionals and have a chance to win a prize

Geo-Challenge Tie Breaker
The Tie Breaker slide. Can you name all the countries that were once collectively Yugoslavia?

Throughout the day, drinks and snacks were available, and at noon we provided lunch. During lunch, we challenged our attendees to participate in a Where in the World Geo-Challenge, in which they were asked to guess the names of geographic features in a slideshow.

At this year’s BMUC, we came prepared with a tiebreaker question, since we expected that a room full of GIS professionals would easily be able to guess all of the features correctly. The winner of the challenge went home with a gift card to the Blue Marble Emporium.


Sam Knight, David McKittrick, and Mike Childs at BMUCChelsea E | Projections
Sam Knight, David McKittrick, and Mike Childs answer questions at the end of the Blue Marble User Conference in Portland, Maine.

5. You will spend only $25 to attend

So why wouldn’t you attend BMUC if it’s only $25 for a day full of GIS presentations, networking, and lunch?!

They had me at “lunch”, so … I’m not sure why you wouldn’t register.

Stay tuned for future Blue Marble User Conferences

All jokes aside, BMUC truly has a lot to offer GIS professionals, even if you aren’t a user of Blue Marble software. From the insights of our keynote speakers, to the latest software developments and one-on-one interactions with our experts, BMUC is a great opportunity to connect with Blue Marble staff, have a direct impact on the software you use, and to network with members of the GIS community.

So stay tuned for Blue Marble User Conferences near you by following us on Facebook, Twitter, LinkedIn, and Instagram, or by checking out Blue Marble User Conference page.


Chelsea Ellis


Chelsea Ellis is Graphics and Content Coordinator at Blue Marble Geographics. Her responsibilities range from creating the new button graphics for the redesigned interface of Global Mapper 18 to editing promotional videos; from designing print marketing material to scheduling social media posts. Prior to joining the Blue Marble team, Ellis worked in graphic design at Maine newspapers, and as a freelance photographer.

LiDARUSA Uses Global Mapper on Travel Channel’s ‘Expedition Unknown’

Did you catch Global Mapper on television over the summer? In an episode of the Travel Channel show, “Expedition Unknown,” the production crew visited Guatemala in search of Mayan Ruins. A team from LiDARUSA, longtime Global Mapper users, were also involved in the project, collecting LiDAR data for the Mirador Basin Project. Using a combination of drones and helicopters, the data was collected and processed, revealing an uncharted Mayan causeway. As you will see in the footage below, Global Mapper was used to classify bare earth and to view the model that was generated.

No need to worry about this brief cameo going to our heads, the “As Seen On TV” people won’t let us use their logo.

The Top 5 New Features of Global Mapper 20

point cloud from 3D mesh
Global Mapper 20 not only offers the ability to create point clouds from 3D meshes, but also offers the option to create a flattened orthoimage derived from the colors in the mesh.

What’s New in Global Mapper version 20?

If you are like most people, it’s unlikely that you take the time to read the plethora of dialog boxes that appear when installing software but if you did, you might actually learn some interesting details about the application. In the case of Global Mapper, one of the windows that beckons for your attention is the “What’s New…” list. While we understand the eagerness of most users to repeatedly click the Next button and finish the installation process so they can “play” with their new toy, it might be worth pausing on this one for just a moment.

Blue Marble’s development process requires each new tool, functional upgrade, bug fix, and performance improvement to be meticulously documented and archived. What you are presented within the “What’s New …” list is an abbreviated version of this archive. In a sense, the list offers a summary report of what the development staff has been working on over the preceding weeks and months. It can make for some interesting reading.

For the soon-to-be-released Global Mapper version 20, there are more than 200 individual changes that have been noted. Given the dynamic nature of the development process, this number will likely increase by the actual date of release.

For those of you who do not have the time or the wherewithal to peruse the entire list, what follows, in no particular order, is a summary of five of the most significant new features that you will find in Global Mapper 20.


Map Layout tools have been streamlined in Global Mapper 20.

1) Improvements to the Map Layout function

One of the surprising findings from last year’s Global Mapper user survey was the importance of map printing. For years, the prevailing opinion has been that printed maps would eventually bite the proverbial dust, but this has not been the case. Global Mapper’s Map Layout functionality was completely redesigned a couple of years ago and it has been undergoing continual improvements ever since. For this release we have introduced a new tool for creating a map book or atlas from selected features;  a new option to filter the legend by layer; and a custom macro function that allows you to create title blocks with name, company, etc. Suffice to say, if your workflow requires the printing of maps, Global Mapper 20 has all the tools you need.

2) Support for Windows Tablets with improved touchscreen functionality

While Global Mapper has always been supported on Windows-based touchscreen devices, certain actions and UI procedures have been difficult. In version 20, there have been significant improvements that allow a wider range of actions to be controlled with your fingers. Pinching to zoom the map is now supported as well as swiping with two fingers to pan the map in both the 2D and 3D views. Previous enhancements to support touchscreen interaction include, touching the screen to activate contextual menus and tapping on the screen with any of the digitizing tools enabled to place points or vertices.

3) Ability to create a point cloud or flattened orthoimage from a 3D mesh or model

Creating a point cloud, similar in structure to LiDAR data, from an existing 3D model or mesh may seem like an inverted procedure. It is the reverse of what would be considered a normal workflow. It does, however, open up a number of interesting 3D analysis workflows, in which the source data is an existing 3D mesh. For instance, the point cloud created from the model can be readily classified, edited, and filtered using Global Mapper’s LiDAR processing tools, and points representing ground can be used to create a DTM. Version 20 of Global Mapper not only offers this new point cloud creation tool but it also offers the option to create a flattened orthoimage derived from the colors in the mesh.

4) Speed improvements when loading large vector files

Citing any type of performance improvement as a new version highlight is often perceived as subjective and difficult to quantify or validate. In the case of Global Mapper 20, the improved speed when working with larger vector files is tangible. During our internal testing, the load time for a specific large shapefile was measured at just over four minutes in version 19 of Global Mapper. In version 20, on the same multi-core machine, the load time was shaved to 2.5 seconds. That’s almost 100 times faster. Improvements have also been made to the rendering of large vector files in the 3D View.

Global Mapper 20 now offers a color picker option, with which users can simply click the section of a raster image that they want to extract color from.

5) Eyedropper tool for accurate color selection

Perhaps not a major functional upgrade, however, when considered in the context of one of the author’s favorite Global Mapper tools, it is a godsend. The tool in question is a feature informally referred to as “Raster Vectorization” or, to give its proper name, “Create Area Features from Equal Values”. The premise is simple: By identifying a specific color in an image, you can create polygons that enclose the extent of the pixels of that color or you can expand the tolerance to accommodate similar colors. Previously, fine-tuning the color selection involved manually entering the required RGB values. In version 20, there now is a color picker option, with which you simply click the section of the raster image that you want to extract. This color picker is also available when choosing a transparent color for a raster layer.

And a couple of bonus highlights for LiDAR Module users:

Tool for creating a 3D model or mesh from selected LiDAR points

The underlying technology that enables the creation of an orthoimage was incorporated into Global Mapper within the Pixels-to-Points tool, introduced in the LiDAR Module in version 19. As a byproduct of the photogrammetric 3D point cloud generation process, there is also an option to generate a flattened raster representation of the area in question. Previously, the only way to create either of these data outputs was from drone images. With version 20 of the LiDAR Module, there is now an option to create a mesh or orthoimage from selected points in an existing LiDAR file or point cloud.

Version 20 of the LiDAR Module will come with a new function to spatially thin a LiDAR layer. This tool allows users to specify a target resolution for the point cloud which eliminates redundancy, reduces file size, and improves performance.

Option to spatially thin a point cloud

The LiDAR Module offers an extensive array of point cloud filtering and editing tools. Among the options are: deleting selected points, geographically cropping a point cloud, removal of noise points, manual or automatic reclassification of points, and horizontal or vertical shifting of the point cloud layer. Added to this list in version 20 is a new function to spatially thin a LiDAR layer. This tool allows the user to specify a target resolution for the point cloud which eliminates redundancy, reduces file size, and improves performance.

Version 20 Coming in Mid September

Global Mapper 20 is scheduled for release in the second half of September 2018. Check your inbox or visit bluemarblegeo.com to find out when it is available for download. As always, you can activate a free two-week trial and if you have time, check out the full What’s New list to see what improvements have been made to your favorite Global Mapper tools.

Blue Marble Monthly – LiDAR vs PhoDAR and Becoming a Pilot

Product News, User Stories, Events, and a Chance to Win a Copy of Global Mapper Every Month

For many, summer is a time for relaxing, for taking your foot off the gas, for being lazy. Not at Blue Marble. We are busy preparing for the next major release of Global Mapper in just over a month, planning our hectic autumn travel schedule, and making the final preparations for our 25th anniversary user conference here in Maine. In this edition of Blue Marble Monthly we formally invite you to join us at BMUC. We also hear from Sam Knight about becoming a licensed drone pilot; we discuss the differences between LiDAR and PhoDAR; and we challenge your geographic prowess in the Where in the World Geo-Challenge.

NEWS | BMUC is Coming to Portland, Maine

We hereby cordially invite you to Blue Marble’s home state for our User Conference (BMUC), as we continue to celebrate our 25th birthday. Not only will you have a chance to meet other users and learn about the latest software developments, but you’ll also hear from some interesting presenters including Ron Chapple who will be speaking about his work in the Pulitzer Prize-winning project, “The Wall”.

 

PROJECTIONS | Becoming an UAS Pilot

Ready for the kids to go back to school? Sorry, we can’t help you with that, but we recently sent our own Sam Knight back to school to learn what it takes to become a licensed drone operator. As we continue to develop tools for the UAV industry, it is essential that we have the first-hand knowledge of what is required. For Sam, this was a journey into unknown territory.

 

PRODUCT NEWS | Call for Beta Testers

Blue Marble’s development process has always relied on direct input from users and now you have a chance to be part of that process. Sign up as a beta tester today and we’ll let you know when a beta version of either Global Mapper or Geographic Calculator is available for you to put through its paces.

 

DID YOU KNOW? | LiDAR vs Photogrammetric Point Clouds

The Pixels-to-Points tool has caused quite a stir in the UAV industry. Creating a high-density 3D point cloud from a drone would have been unheard of just a few years ago. While the data may look and feel like traditional LiDAR, there are significant differences between the two formats. In a recent blog post, we outlined some pros and cons of each.

USER STORY | Planning Truck Stops with Global Mapper

In the latest Global Mapper case study, we hear from Michael Frings, General Manager of MFBI Technologies about how the LiDAR Module’s point cloud processing tools played a critical role in planning autobahn truck stops in Germany.

“The fact that the LiDAR Module is so powerful, giving us the ability to handle large point clouds, was the killer argument for us to go with Global Mapper.” – Michael Frings

 

 

VIDEOS | Can Your GIS Do This Without Extensions?

Simply stated, Global Mapper gives you more functionality for less money. Need proof? Take a look at this short video highlighting some of the terrain processing tools that are available out of the box in Global Mapper. No extensions required.

This and previous Blue Marble Webinars and Webcasts can be viewed at the Blue Marble YouTube Channel and on the Webinars page on the Blue Marble web site.

 

Where in the World Geo-Challenge

The geographic sleuths were once again hard at work in July. Most of you were able to identify all five locations in the Where in the World Geo-Challenge. The randomly selected winner of a copy of Global Mapper is Roy Mayo, a land surveyor from Mackay, Mackay, and Peters. If you are one of the handful whose response to the capital city question was, “Haven’t a clue” or words to that effect, check out the correct answers here then click the link below to see if you can do any better in August’s challenge.

 

See complete terms and conditions here.

EVENTS | Global Mapper Training in Houston

The Blue Marble training team will be hitting the road again in October with the next three-day Global Mapper class scheduled for Houston. Typically our Houston classes fill up fast so be sure to sign up as soon as possible to reserve your spot.

“Without a doubt, one of the most informative and enjoyable technical training classes I have ever taken.”
– Recent Global Mapper trainee

 

Global Mapper for Wind Energy Development

3D models of wind turbines in the 3D Viewer in Global Mapper.

The development of a wind energy  project, big or small, is a complex process that considers several factors. From measuring the actual wind resources in an area to researching potential zoning and ordinance conflicts, it’s not a project that’s easily simplified. But in the beginning stages of planning, whether you’re considering bringing wind energy to your own property or to a larger community, creating a rough visualization of a wind project can be relatively easy.

In this blog entry, we explain the online resources and tools available through Global Mapper that can help estimate resources and terrain modifications, and create a visualization of the preliminary plans of a wind project. We’ll do this by simulating a simplified planning process for a wind farm to arrive at a 3D visualization.

Importing & Analyzing Online Data in Global Mapper

In the planning of an actual wind project, we would want to know the annual average wind energy potential of our property, any legal limitations, and so much more information before even beginning plans for development. But for this simple simulation, our purpose is to introduce how relevant data can be accessed, analyzed, and visualized in Global Mapper.

One online source that we are using is the National Renewable Energy Lab, which is a federally owned and contractor-operated facility that provides data and maps for energy-focused purposes. The data set we are downloading shows the wind energy potential of areas across the state of Maine on a relative scale ranging from values of 0 to 7, with 7 representing the greatest potential.

Running a Simple Query to Target Specific Attribute Values

If we determine the required value for our wind farm plans, we can build a query that targets those specific areas that match our requirement. For instance, if we wanted to find areas that are greater than or equal to the value of 6, we can run a simple query to find those areas within this data set. We can also use the Info tool to explore the wind energy potential of properties within an area.

NREL data
The freely available raw data downloaded directly from the NREL website. By either running a simple query or using the Infor tool, polygons can be selected in this data to explore their attributes.

Applying Color to Visualize Patterns in Data

Another way we can visualize the distribution and range of values in this data set is by applying a color scheme. As we can see, this visualization makes it easy to target those areas of maximum wind potential. If we wanted, we can add a legend to our map to further illustrate what values the colors actually represent. But in this instance, we are interested in visualizing which areas have the highest potential.

Colorized data
NREL data with colors applied, allowing for a more immediate understanding of the range of values in the data set.

We can bring in some additional data to add more context, such as county outlines and town boundaries within the state. If we were looking to develop wind energy in a particular geographic location, for instance in a particular town, we have the background data that shows those boundaries. We can also pull in road data to see the road access to areas being considered for development.

For our simulation, we are choosing an area based on this very quick visualization of the NREL data we imported into Global Mapper.

Accessing Free Terrain and Land Cover Data Through Global Mapper’s Online Data Service

With our area of interest chose, we can find more relevant data through Global Mapper’s free online data service. For our simulation, we are choosing to use a specific area of a 10-meter National Elevation Data (NED) data set that we streamed into the application and exported to a local Global Mapper grid file.

Online data in Global Mapper
Terrain and land cover data accessed through Global mapper’s online data services.

We streamed the data through the online data service, which has a wide range of data options categorized geographically as well as by data type and theme. In this instance, we are interested in terrain data to give us visual context and also a functional base for some of the modification processes we will run later.

We are also interested in land cover data, which will help us visualize the roughness of the terrain. We can find a raster representation of our area under the land cover section in the online data options.

Generating a Roughness Grid from Land Cover Data

Areas with less friction, or surface roughness, are better suited for wind energy production. From our land cover data, we can generate a grid to visualize areas where roughness could reduce energy potential.

To create this roughness grid, we can open locally saved land cover data that we had previously exported from the online data service. Either by right clicking the land cover layer or from our analysis menu, Global Mapper gives us the option to generate a roughness grid and to choose a shader with which to render the grid. For this visualization, we prepared a custom shader beforehand that illustrates the range of roughness through the gradients of a single color – lighter tints representing less roughness, darker shades representing greater roughness.

Roughness grid in Global Mapper
A roughness grid showing the distribution of open and forested areas through the gradients of a single color.

This visualization allows us to see open areas such as fields or bodies of water that may provide ideal conditions for a wind farm.

Finding Ridge Lines & Isolating a Single Ridge

Another ideal location for a wind farm is on a ridge. We can find a ridge line or high point within the focus area by using the Find Ridge Lines tool, which is a function that works similarly to a watershed analysis, but in reverse. Instead of looking for areas where drainage would accumulate, the tool finds the highest points on our terrain.

Ridge lines in Global Mapper
Ridge lines generated using the Find Ridge Lines function in Global Mapper.

After choosing specific parameters, such as the width threshold of the lines, we can see a variety of ridge lines appear in the area visible on our screen. These lines are actually segmented, so in order to isolate a ridge we want, we can combine the segments of that ridge into a single line by selecting the desired segments and using the Combine Features tool.

Plotting Points Along a Ridge to Represent Wind Turbines

With our new ridge line selected, we can generate point features to represent our wind turbines along the ridge by using the Create New Points from Selected Lines tool. We can specify that we want ten vertices to represent ten wind turbines evenly spaced along the ridge, and discard vertices that may have already been part of our original ridge line. Once these parameters are set up, we can see that the ten vertices have been generated that represent the wind turbines in our simulation.

We can then edit these inherently generic point features and choose a Feature. For this simulation, we prepared a custom feature type called Wind Turbine which has a 3D visual representation of a wind turbine assigned to it. This 3D model is actually pre-configured in Global Mapper. We can also edit the attributes of these, but for this simulation, we are only assigning our customized feature type.

Points on a ridge line in Global Mapper
Evenly spaced points representing the locations of wind turbines on a ridge line.

Once these points have been edited, we can view them in the 3D Viewer and see the 30-meter height attribute of the 3D models we prepared in advance, and the even spacing between each model along our ridgeline.

Creating Buffers Around Wind Turbine Locations

After we have placed our wind turbines, we can then generate a buffer around each point in preparation for creating flattened areas, or site pads, in the terrain. With our points selected, we can click the Buffer tool in our toolbar. In this simulation, we are choosing to have buffer areas with a 10-meter radius around each of our wind turbines. Once the buffer areas are defined and generated, we see the concentric ring that represents the physical area that will be flattened around each point in the terrain-modification process.

Buffers around points in Global Mapper
Circles around each point represent a 10-meter buffer that was created using the Buffer tool.

Generating an Elevation Grid from LiDAR Data

In order to generate a more accurate terrain model for our simulation, we can import pre-cropped LiDAR data that was originally streamed from the U.S. Geological Survey through Global Mapper’s online data service. This higher quality elevation data allows us to create more precise modifications and visualization than the lower-resolution terrain data we had originally imported.

Raw LiDAR data in Global Mapper
Raw LiDAR data from the U.S. Geological Survey.

To create an elevation grid from this LiDAR point cloud, we can simply click the Elevation Grid button with our LiDAR data layer selected. In this simulation, we are choosing to grid only ground points. Once the new grid has been generated, we can open the Elevation Options to feather, or blend, the edges of our higher quality grid into the lower-resolution terrain data.

Calculating Cut and Fill Values & Creating Pad Sites

With our buffers selected, we can use the Flatten Site Plan tool to flatten those buffer areas of the LiDAR-based elevation grid. The tool calculates the volume of material that must be shifted in order to achieve a flattened site – giving a cut volume and a fill volume. Not only does Global Mapper give these helpful calculations, it also modifies the elevation grid so we can visualize what the cut and fill alterations would look like.

Cut and fill calculation in Global Mapper
The results of a cut and fill calculation in the Path Profile window. The original profile of the terrain is shown in red and the flattened terrain is represented by a yellow line and green shading. This shows the cut and fill that would be required for this pad site.

Viewing the Visual Impact of a Project with the View Shed Tool

With one of our wind turbine points selected, we can click the View Shed tool to see the extent at which our wind turbine is visible in the distance. We can base our analysis on the height of our selected wind turbine and on the height of an average person — 2 meters or so. Global Mapper calculates the areas at which our wind turbine will be visible to an average person, and displays these areas in red. This analysis allows us to see the visual impact of our wind farm in the area of development.

View Shed tool in Global Mapper
The areas displayed in red are locations where the selected wind turbine is visible.

Creating a Fly-through of a Wind Energy Project

After setting up our wind turbines and modifying our terrain surface, we can create a 3D fly-through to further visualize the project. We can do this by drawing a line for our flight path using the Digitizer tool. With this line selected, we can set up the specifications of our fly through by using the Create Fly-through tool.

Once we’ve established the height, bank angle, and duration of our flight, we can preview it in the 3D Viewer. If we’re happy with this fly-through, we can also save it from the 3D Viewer. If we aren’t happy with it, we can go back and edit the flight or segments of the flight line again.

Creating a fly-through is a great way to present a project, particularly one like a wind energy project that may need to be proposed to government officials or multiple stakeholders.

Global Mapper: A Robust Tool for Any Development Project

While this simulation involves some behind-the-scenes preparation, such as the creation of a custom point feature type and the cropping of LiDAR data, it’s still a prime example of how simple data visualization and terrain modification can be in Global Mapper. It can be easy, not only in the context of a potential wind energy project, but for any development plan that requires quick access to terrain data and robust digitizing tools.

Pixels-to-Points™: Easy Point Cloud Generation from Drone Images

Point cloud generated from 192 drone images using the Pixels-to-Points tool
A point cloud generated by EngeSat’s Laurent Martin using the new Pixels-to-Points™ tool in version 19 of the LiDAR Module. The LiDAR Module tool analyzed 192 high resolution drone images to create this high-density point cloud.

When we have a new product release like the version 19 of the LiDAR Module that comes with the Pixels-to-Points™ tool, it’s always exciting to see that feature in action for the first time outside of the Blue Marble office. Our South and Central American reseller Laurent Martin from EngeSat was quick to try the new Pixels-to-Points tool for himself using drone data collected by his peer Fabricio Pondian.

The new Pixels-to-Points tool uses the principles of photogrammetry, generating high-density point clouds from overlapping images. It’s a functionality that makes the LiDAR Module a must-have addition to the already powerful Global Mapper, especially for UAV experts.

Below, screenshots captured by Laurent illustrate the simple step-by-step process of creating a point cloud using the Pixels-to-Points tool and some basic point cloud editing using other LiDAR Module tools.

1. Loading drone images into the LiDAR Module

The collection of images loaded into the LiDAR Module must contain information that can be overlapped. The Pixels-to-Points tool analyzes the relationship between recognizable objects in adjacent images to determine the three-dimensional coordinates of the corresponding surface. In this particular example of the Pixels-to-Points process, 192 images are used.
The flight path of the UAV and the locations of each photo can be viewed over a raster image of the project site.

2. Calculating the point cloud from loaded images

192 high-resolution images are selected in this particular example. The tool will give an estimated time of completion, which depends on the size of the images and number of images.
The Calculating Cloud/Mesh dialogue displays statistics of the images as they are analyzed and stitched together by the Pixels-to-Points tool.
An alert window pops up when the process is complete.

3. Viewing the generated point cloud

A new layer of the generated point cloud is now in the control center.
A close up of the final processing result with the orthoimage.
A close up of the final result with the new point cloud generated from the 192 images.
A 3D view of the resulting point cloud.
A view of the point cloud colorized by elevation
A cross-sectional view of the point cloud using the Path Profile tool

4. Classifying the point cloud

Points can be reclassified automatically or manually using LiDAR Module tools. Here, the point cloud is reclassified as mostly ground points.

5. Creating an elevation grid and contours from the point cloud

With the point cloud layer selected, a digital terrain model can be generated by clicking the Create Elevation Grid button.
A cross-sectional view of the digital terrain model using the Path Profile tool
Contours can be generated from the digital terrain model by simply clicking the Create Contours button.

A quick and easy process

In just a few steps, Laurent was able to create a high-density point cloud from 192 images, reclassify the points, and create a Digital Terrain Model. It’s a prime example of how easy version 19 of the LiDAR Module and the new Pixels-to-Points tool are to use. Check out EngeSat’s full article on the release of LiDAR Module.

The Foils and Follies of Drone Data Collection

Drone collects imageryChelsea E | Projections
A drone flies over the Blue Marble Geographics headquarters in Hallowell, Maine collecting imagery to be used in software testing.

Over the past few months, the Blue Marble team has taken on the challenge of collecting drone imagery of our property for testing exciting new features coming soon to Global Mapper. As we began to step into the fairly new commercial UAV field, we realized that there are few assumptions we can make. First of all, there is a learning curve that comes with simply flying a drone to take pictures or collect imagery. There are also a number of legal hurdles, safety concerns, and practical challenges to consider. We needed guidance as we began this initiative, from which we learned a few important lessons.

Drone Flight Concerns and Considerations

Though it appears to be a relatively simple technical challenge, flying a drone has legal and safety considerations that were readily apparent to us but may not be common knowledge. Our first concern was that the Blue Marble headquarters are only about a mile and half, as the crow (or should I say UAV) flies, from the Augusta State Airport. Small planes fly overhead frequently and quite low at times. We were not sure if our building was located near banned airspace. Our second concern was that our property abuts the Hall-Dale elementary school playground. A location that is full of children three or four times a day during business hours. What if we crashed in the school yard while children were at recess? What a PR nightmare.

These concerns about the airport and school property were enough to stall us from simply buying or building a drone, and prompted us to seek guidance. Fortunately for us, the University of Maine at Augusta offers an unmanned aerial vehicle training course taught by certified pilots. A quick call to one of the faculty members for more information resulted in the gentlemen visiting our offices to conduct some test flights and to share a bit of their knowledge with us. We learned a great deal even from our first test.

Programming drone flight pathChelsea E | Projections
Certified UAV pilot Dan Leclair uses his laptop to set up a flight path for a drone to fly over the Blue Marble Geographics headquarters in Hallowell, Maine.

Setting Up the Drone for Flight

Certified pilots Dan Leclair and Greg Gilda joined us at our office on a beautiful, clear and wind-free day in early October. They confirmed that we could fly over our property with some stipulations, despite our location near a commercial airport. As a precaution, the gentlemen brought with them a hand-held radio to monitor pilot communication in the area as we set up our flight path. They also reassured us that there was little chance of the drone flying off of our property during school recess, since the drone would be programmed and flown on autopilot. Dan and Greg shared a litany of information about how the drones now have homing devices, automatically avoid collisions with structures, and fly on a pre-programmed flight pattern. If, for some reason, it did fly over school property, we could manually fly it back. We also learned that the drone must stay within our view to remain in compliance with Federal Aviation Administration (FAA) regulation, which was no problem. We weren’t flying a large area anyway.

As we chose and programmed the drone flight path with a laptop, the pilots focused on a very common issue for us GIS folks — proper elevation above ground. Since we are located in the descent path of planes landing at the airport, we needed to keep the drone relatively low to avoid any potential, and of course unwanted, collisions with an aircraft. We decided that we would fly at 100 feet above ground on a path that was 1,793 feet long and would take about 3 minutes.

Drone cameraChelsea E | Projections
We also set up the drone camera for the light conditions, and programmed it to capture an image every two seconds during the flight.

The software the pilots used had some short comings in that the user had to manually select points for the back-and-forth flight path we wanted. As a software guy, this seemed tedious. I would rather draw a quick polygon or box around my area of interest and have that converted to a flight pattern. Perhaps that could be a new feature for Global Mapper Mobile in the future? In this case, our area of interest was our building, so it did not take long to manually designate the flight pattern by selecting waypoints for the drone to fly back and forth. We also set up the drone camera for the light conditions, and programmed it to capture an image every two seconds during the flight. One practical lesson we learned was that a good staging area for the laptop is preferable on a sunny day. We used the back of an SUV for the shade, so we could see the laptop screen and comfortably program the software.

After a bit of work we were ready to fly.

Rotors are attached to droneChelsea E | Projections
Certified UAV pilot Greg Gilda puts the rotors on the drone before it’s sent on a flight path over the Blue Marble headquarters.

Flying the Drone and Collecting Data

We set the drone on a circular landing pad made of nylon near the back of our property. Greg attached the rotor blades, very carefully I might add. The blades attach rather easily to the quad copter by snapping into place. Dan explained that this step was done before turning the drone on, saying something to the effect of “you don’t want to lose a finger”.

Once the UAV was ready to fly we all stepped back. Dan launched it into the air with the touch of a button or two, and the drone began its pre-programmed flight path. For those experienced pilots, you might notice that we did not discuss ground control. More on that in a later blog entry, I suppose, but these early tests were not including that. The flight went seamlessly and Dan only took over manual control as he brought the drone in for a landing — a personal preference of his.

Everything seemed to progress well but we quickly learned that the drone ended up capturing only video (see below) and not still photography. A few more attempts later, we sadly learned that we would not be able to collect still imagery that day. Apparently there was some incompatibility with the flight planning software and the drone. Not to fear, they agreed to return another day after a software update to collect the imagery. So perhaps the most important lesson of the day was that, despite the best laid plans of mice and men, things do not always go as planned with drone data collection. If you’re interested in learning some more about the foils and follies of drone data collection visit this handy resource:  http://knowbeforeyoufly.org/

We’ll have more to share with you on this process and, of course, what we are doing with the data soon.

 


Patrick Cunningham


Patrick Cunningham is the President of Blue Marble Geographics. He has two decades of experience in software development, marketing, sales, consulting, and project management.  Under his leadership, Blue Marble has become the world leader in coordinate conversion software (the Geographic Calculator) and low cost GIS software with the 2011 acquisition of Global Mapper. Cunningham is Chair of the Maine GIS Users Group, a state appointed member of the Maine Geolibrary Board, a member of the NEURISA board, a GISP and holds a masters in sociology from the University of New Hampshire.

Blue Marble Monthly – October 2017 GIS Newsletter

Satellite Imagery

The Global Mapper Edition
Product News, User Stories, Events, and a Chance to Win a Copy of Global Mapper Every Month

October’s newsletter focuses on Global Mapper and highlights the new features of recently released version 19. We introduce the latest blog post from Katrina Schweikert, one of Blue Marble’s Applications Specialists, in which she describes how Global Mapper helped resolve a drainage problem around her house. We also hear from Global Mapper Guru, Mike Childs who recently contributed to the Blue Marble blog with an entry in which he eulogizes about one of his favorite subjects: free online data. Finally, and as always, we challenge your geographic aptitude in the Where in the World Geo-Challenge with a brand new copy of Global Mapper v19 up for grabs for the lucky winner.

Global Mapper 19 Release

Product News | Global Mapper 19 Released

2017 marks twenty years since the aforementioned Mike Childs responded to a request from the USGS to develop a simple viewing tool for their burgeoning collection of public-domain datasets. In the intervening years, Global Mapper, into which the freeware application would eventually evolve, has established itself as a key player in the worldwide geospatial industry. Late last month, we proudly unveiled version 19 of this remarkable software with upgrades and improvements throughout the application.

Significant new functionality includes:

  • A new table-based attribute querying and editing tool
  • An innovative interactive utility for adjusting the terrain hillshade
  • Drag and drop window docking for improved multiview management
  • New support for online data for Canada and all 50 U.S. states
  • And much more

 

Watershed Analysis in Global Mapper

Projections | Estimating Property Modifications in Global Mapper

One of the benefits of the increased availability of local LiDAR data is the prospect of conducting high-precision analysis of terrain variability, especially in the context of drainage. This was the impetus behind a project recently undertaken by Blue Marble’s Katrina Schweikert. Having recently purchased a house close to Blue Marble’s headquarters in Hallowell, Maine, Katrina soon found out that there was a stream literally flowing through her unfinished basement. Read how Global Mapper was used to create a simulated model illustrating how the problem could be resolved.

 

Online Data Access in Global Mapper

Did You Know? | Free Online Data in Global Mapper

In a world in which streaming has become the norm, it is not surprising that much of the map data that we consume is increasingly being delivered through the internet. The benefits are obvious: real time updates and no local storage requirements. Did you know that Global Mapper includes easy access to immeasurable quantities of data from countless sources that are readily, and often freely, available within the Online Data component of the software? For the Global Mapper 19 release, we expanded the built-in online data services to include data for all 50 U.S. states and several Canadian provinces. Recently, we convinced Mike Childs to take a break from coding so he could share some insights into the online data options in Global Mapper.

 

Hillshade Rendering in Global Mapper

Webinars and Webcasts | What’s New in Global Mapper 19

On Thursday, October 12th, Blue Marble Application Specialists will be conducting a live webinar showcasing the highlights of the Global Mapper 19 release. This hour-long presentation is scheduled to begin at 2:00 p.m. (U.S. Eastern Time), and it will provide an opportunity to see the latest tools and to ask questions about the new functionality. Space is limited, and registration is required so be sure to sign up today.

Previous Blue Marble Webinars and Webcasts can be viewed at the Blue Marble YouTube Channel and on the Webinars page on the Blue Marble web site.

 

October 2017 Geo-Challenge

Where in the World Geo-Challenge

Thank you to all who submitted an entry in September’s Where in the World Geo-Challenge. Check out the answers here. The randomly drawn winner and the recipient of a copy of Global Mapper is Ray Romano, Chief Designer at Persu Property Fund Pty Ltd in Australia. This month, another copy of Global Mapper is being offered to the winner so why not take the challenge.

 

See complete terms and conditions here. 

 

GEO1 Hangar

BMUC LA | Win a Helicopter Flight Over Los Angeles

Thinking of heading to the Blue Marble User Conference in Los Angeles? Now there’s another reason for you to sign up. Several attendees will be given a once-in-a-lifetime opportunity to tour the city from the air. Scheduled for November 15 and held in partnership with Blue Marble partner, GEO1, the event will include an onsite drawing to select the lucky participants. After the close of the meeting, the winners will accompany GEO1 technicians on a helicopter ride as they simulate their aerial data collection workflow while flying over the famous landmarks of LA. Space is limited and the registration deadline to be included in the drawing is October 13, so sign up today.

Upcoming Events

Visit Blue Marble at the following events:

2017 AUSA Annual Meeting & Exposition | Washington DC | October 9 – 11

NYGEO Conference | Lake Placid, NY | October 17 – 19

Global Mapper & LiDAR Module Training | Ottawa, Canada | October 17 -19

Maine GIS User Group Meeting | Bangor, ME | October 20

2017 Texas GIS Forum | Austin, TX | October 23 – 27

Commercial UAV Expo | Las Vegas, NV | October 24 – 26

Fall Northeast Arc User Group Conference | Newport, RI | November 5 – 8

Global Mapper and LiDAR Module Training | Atlanta, GA | November 7 – 9

Estimating Property Modifications in Global Mapper

Connecting to the US NAIP high-resolution imagery.
Connecting to the US NAIP high-resolution imagery.

 

I recently purchased a house in Hallowell, Maine, where the Blue Marble Geographics office is located. Hallowell is a teeny tiny city with lots of historic homes that sit on a rather large hill overlooking the Kennebec River. One aspect of my historic fixer-upper property that needs some work is the drainage. I have decided to explore drainage solutions by estimating property modifications using Global Mapper and publicly available data.

Finding Data in Global Mapper

The first step is finding the right data. So, to start with, I use the search tool in Global Mapper to create a point feature at my address. I also change the projection to something that works for the area, such as the State Plane projection for Maine. Next, with the online data tool, I easily connect to the US NAIP high-resolution imagery.

The State of Maine GIS site, MEGIS, has a number of other helpful layers that can be added. Vector data can be downloaded as shapefiles using a web browser and can be loaded into Global Mapper by simply dragging the files into the software. Like a lot of states, Maine’s GIS site also offers web services that can be added to the list of online sources in the software. For my project, I need the outline of my individual property, so, I first download the property parcels layer for the entire city and drag the downloaded zip file onto the map to import it. I use the Digitizer to select my property and then use CTRL+C and CTRL+V to copy it to a new layer.

Using the Digitizer tool
I use the Digitizer to select my property and then use CTRL+C and CTRL+V to copy it to a new layer.

What I really need for this analysis is some high-resolution terrain data, and luckily my property is close enough to the coast to be included in the NOAA coastal LiDAR data. I use the online data source tool again to search the Digital Coast for data that matches my current map bounds.

Cleaning up LiDAR Data in Global Mapper

A quick look at the LiDAR data confirms that it contains preexisting point classifications, including a lot of points marked as noise that look fine to me.

Raw LiDAR Data
Cleaning up and improving the classification of LiDAR points with the Automatic Classification tool.

My first task is to clean up and then improve the classification with the Automatic Classification tools. Using the Path Profile tool, which renders a lateral view of the point cloud data, I can clean the data up even more with some manual editing, since it is such a small area that I am interested in.

Classified LiDAR Data
Note the edges of the property boundary in blue on the profile window. There are some trees on both sides.

Applying Colors to a Point Cloud in Global Mapper

The Maine GIS site also provides 4-band ortho-imagery that was collected in a similar time frame to the publicly available LiDAR data. From that imagery, I apply the RGB color values to my point cloud using the Apply Color tool, which improves the point cloud analysis capability and creates an interesting visual perspective of the data. The imagery is leaf-off, so it does not match up perfectly with the point cloud, but it adds some detail that can help with identification and analysis.

View From the House in LiDAR Data
Looking down at the Kennebec River from my property with 3D colorized LiDAR points.
CIR
False color infrared (IR) display of the points highlights the coniferous vegetation and other late autumn greenery in red.
House Profile in False Color IR
Profile of the false color IR with the house in the middle.

Estimating Property Modifications with Global Mapper

After creating a terrain surface from the classified and filtered LiDAR data, I estimate the modifications that are needed to improve the drainage around the base of the house.

Using the new Breakline and Hydro-flattening tools, I create a flattened foundation by applying a height to the buildings in the terrain modeling process. Next, using the Watershed tool, I see the current drainage problem.

Drainage area that flows through the house and garage
Drainage area that flows through the house and garage shown in pink.

By using the digitizer tool and calculating the elevations, I create a line for a back drainage that would allow water to flow from start to finish. Then using buffering and site planning tools, I create a modified terrain surface that will calculate the necessary terrain modification.

I create a line for a back drainage that would allow water to flow off of the property.

Finally, I measure the volume of soil to be removed, and calculate the benching and terracing for the back retaining wall.

Site Plan Volume
Measuring the volume of soil to be removed for the drainage plan.

After the modification, the drainage from the back of the house to the road is much better. I am also glad to have some warning of just how much dirt removal a plan like this will involve.

Cross sectional path profile view of property
A cross sectional path profile view shows the new drainage line compared to the original terrain and classified LiDAR data.

 

Modified Drainage Watershed
Flow modeling shows how the terrain modification improves the flow of water around the back of the house.

 

I am still considering options for creating a small pond, ending with a tile drain, and many other possibilities. But thanks to freely available data and some quick calculating and visualization with Global Mapper, I have a much better sense of the scope of this project and what the final results might look like.


Katrina Schweikert
Katrina Schweikert


Katrina Schweikert is an Application Specialist at Blue Marble Geographics. She provides technical support, training, and software documentation. Katrina has over five years of professional experience in GIS, a GIS certificate from University of Wisconsin-Madison, and a degree in Geography from Middlebury College. She is happy to be working in technology back in her home state, as well as meeting GIS users across the globe.

DroneMapper: Using Global Mapper for UAV Data Processing

Once the GRID generation is completed you have a bare earth DTM which can be exported as a GeoTIFF or any other elevation format via Global Mapper.

DroneMapper is one of the success stories in the fledgling field of UAV data collection and processing. After several decades of experience working in the aerospace industry, CEO Pierre Stoermer was quick to recognize the potential for drones as a viable low-cost alternative to manned aircraft for this purpose. Serving customers in a wide variety of industries and business sectors, including agriculture and mining, Stoermer recognized the importance of efficient data management and processing, both for their internal processes and for the value added products that the company delivers to their customers. This lead Stoermer to Global Mapper for UAV data processing.

CHALLENGES

Like most small businesses, one of the main challenges faced by DroneMapper was finding tools that provide the right level of functionality but that fit within the company’s inevitable budgetary constraints. As with any business expenditure, investing in technology must bring some degree of assurance that there will be a return on this investment. Traditional GIS applications are notoriously complex and cumbersome, requiring an inordinate amount of time and a high degree of training and expertise to effectively operate, which significantly impacts the overall cost of any project.

Without a dedicated GIS technician at DroneMapper, the operation and maintenance of the GIS data processing workflow is the responsibility of the current staff. The selected software must therefore be easy to learn and easy to apply.

DroneMapper has an expanding client and customer base, whose needs and requirements necessitate an efficient data processing platform that can generate deliverables in a wide variety of formats and with varying specifications.

A 3D view of piles in Global Mapper that were measured to give the viewer perception of their relative sizes.

SOLUTIONS

Unlike most companies who, when faced with a technology decision, evaluate multiple software alternatives, DroneMapper found Global Mapper first and has stuck with it. The range of functionality in tandem with the unparalleled format support were enough to convince them that Global Mapper was an ideal solution for their needs.

A visualization of what has been filtered from an initial point cloud and digital elevation model.

This versatile, fully functional GIS application has been steadily gaining an eager and dedicated worldwide following among geospatial professionals. Recent development work has focused on the visualization and analysis of 3D data, especially LiDAR and other point cloud formats. According to Stoermer, “Global Mapper provides an outstanding set of tools for efficiently assisting us and our client base in an affordable manner”.

GLOBAL MAPPER FOR DATA PROCESSING

Global Mapper is at the core of most of DroneMapper’s data processing workflows. The company employs the software’s intuitive 2D and 3D visualization tools to provide initial quality control of ortho-rectified imagery and DEMs.

Further along the production line, Global Mapper is the go-to application for filtering point cloud data to create accurate, bare-earth Digital Terrain Models. These DTMs allow the company to generate customized contour lines that can be exported in shapefile or virtually any other vector format. Global Mapper’s powerful cut and fill analysis capability and volumetric calculation tools are used to precisely measure volumes, providing DroneMapper’s clients in a variety of industries with site-specific intelligence that is essential for efficient project management.

Employing Global Mapper’s powerful raster calculation functionality, DroneMapper is able to quickly and accurately analyze vegetation patterns by generating NDVI grids. This provides an invaluable service to clients in the agriculture and forestry industries.

BENEFITS

DroneMapper’s decision to settle on Global Mapper for its spatial data management allows the company to perform both internal data processing as well as customer services on one powerful and easy-to-use platform. The application’s SDK will also provide an opportunity for future custom development projects and will allow DroneMapper to adapt Global Mapper to more specifically meet their needs.

ABOUT GLOBAL MAPPER

Global Mapper is an affordable and easy-to-use GIS application that offers access to an unparalleled variety of spatial datasets and provides just the right level of functionality to satisfy both experienced GIS professionals and beginning users. Equally well suited as a standalone spatial data management tool and as an integral component of an enterprise-wide GIS, Global Mapper is a must-have for anyone who deals with maps or spatial data. The supplementary LiDAR Module provides a powerful set of tools for managing point cloud datasets, including automatic point classification and feature extraction.

ABOUT BLUE MARBLE GEOGRAPHICS

Trusted by thousands of GIS professionals around the world, Blue Marble Geographics is a leading developer of software products and services for geospatial data conversion and GIS.  Pioneering work in geomatics and spatial data conversion quickly established this Maine-based company as a key player in the GIS software field.  Today’s professionals turn to Blue Marble for Global Mapper, a low-cost, easy-to-use yet powerful GIS software tool. Blue Marble is known for coordinate conversion and file format expertise and is the developer of The Geographic Calculator, GeoCalc SDK, Global Mapper, LiDAR Module for Global Mapper, and the Global Mapper SDK.